RB DIGITAL AWARDS 2024

Название кейса

Управление процессом окомкования железорудных окатышей с помощью машинного обучения

Сроки реализации (с / по):

сентябрь 2022 г.- октябрь 2023 г.

Компания, которая реализовала кейс:

"Северсталь"

Сайт компании, которая реализовала кейс:

https://severstal.com/rus/

Руководитель по реализации кейса от компании с должностью:

Светлана Потапова, директор «Северсталь Диджитал»

Исходные данные

Решение реализовано на «Карельском окатыше» (входит в «Северсталь»). Окомкование пылеобразного железорудного концентрата в окатыши нужно для его более удобной транспортировки и последующего эффективного использования в доменной печи для производства чугуна. В окомкователе концентрат соединяется со связующими добавками (например, бентонит, известняк), гранулируется в окатыши с размером гранул в диапазоне от 5 до 20 мм. Затем сырые окатыши подаются в обжиговые машины, где подсушиваются и упрочняются при температуре от 1000 до 1300 градусов. Готовая продукция в виде обожженных окатышей поступает на следующий передел на ЧерМК, где загружается в доменную печь.

Проблема:

ЧерМК, как главному потребителю производимой продукции, требуются окатыши класса 10-12,5 мм для оптимального протекания процесса выплавки чугуна. Производство окатышей осуществляется в условиях постоянно изменяющихся характеристик концентрата, что влияет на распределение окатышей по классам крупности на выходе из окомкователя. Управление процессом окомкования осуществляется оператором вручную на основании экспертизы и лабораторных проб, которые производятся раз в несколько часов, а по некоторым параметрам раз в сутки. Оперативный контроль гранулометрического состава окатышей производится визуально с высоты нескольких метров. В таких

RB DIGITAL AWARDS 2024

условиях невозможно осуществлять постоянный и точный контроль целевого класса крупности окатышей и своевременно реагировать на изменившиеся характеристики сырья. Одним из важных параметров на этапе обжига является влажность сырых окатышей. Оператор измеряет влажность окатыша тактильно «наощупь», что даёт субъективную оценку низкой точности.

Описание кейса/Основное решение:

Было решено создать комплекс моделей для автоматического управления процессом окомкования. В него вошли модели компьютерного зрения для мониторинга параметров сырых окатышей и модели машинного обучения для управления процессом окомкования.

Комплекс моделей машинного обучения, который автоматически управляет скоростью вращения окомкователя и дозировкой бентонита, выдает рекомендации по дозировке железорудного концентрата, что позволяет повысить производительность агрегата с сохранением качества продукции, либо увеличить процент класса 10-12,5 мм при сохранении производительности.

На основе анализа изображений с камер с высоким разрешением модель компьютерного зрения определяет влажность и гранулометрический состав сырых окатышей. Нейронная сеть точно определяет контур и размеры окатышей, в том числе те, которые частично скрыты под первым слоем окатышей. Система компьютерного зрения осуществляет непрерывный мониторинг и обеспечивает поток информации в систему управления линией окомкования, что позволяет автоматически управлять и оперативно реагировать на изменение параметров процесса окомкования.

При обучении модели управления использовались специальные регуляризаторы, которые помогли в шумных данных выявить правильные физические зависимости. Идентификация параметров модели происходит в онлайн-режиме, она корректируется по текущим данным, поступающим в режиме реального времени.

Решение построено на платформе DataLake. Сбор данных с OPC осуществляется с помощью Nifi и своих сервисов на Java, для оперативного хранения используется шина данных Kafka, для долгосрочного Hadoop. Решение написано на языке Python и обёрнуто в Docker-контейнер, оркестрация организована в Kubernetes.

В части CV использовались собственные разработки, сверточные нейросети (сегментация)

Ca	айт кейса при наличии:	
	_	

Результаты до и после:

RB DIGITAL AWARDS 2024

Была подтверждена возможность за счёт использования модели повысить производительность на 11% относительно других линий с сохранением качества продукции, либо увеличить процент класса 10-12,5 мм на 2.3% при сохранении производительности.

Управление процессом окомкования в автоматическом режиме ограничило влияние человеческого фактора и снизило нагрузку на операторов. Отмечено упрощение процесса вовлечения в работу оператора без опыта управления процессом окомкования. Решение дает возможность не только контролировать процесс окомкования и управлять им, но и стандартизировать работу обжиговой машины. Решение успешно пропилотировано на одной из шести линий окомкования и будет тиражировано на другие линии.

Ссылка на дополнительный материал с подробностями: (необязательно)

https://rutube.ru/video/26694f0c660deb2a8bd07d56e384bfa4/

В чем вы видите уникальность вашего кейса?

(Почему вы считаете, что кейс достоин стать победителем в своей номинации?)

При создании решения использовались некоторые элементы Physics Informed ML. Решение стало уникальным для комбината симбиозом физического моделирования, алгоритмов машинного обучения и компьютерного зрения. Помимо периодического переобучения модели под долгосрочные тренды, модель в онлайн-режиме подстраивается под различные возмущающие факторы и учитывает их для более точных предсказаний в режиме реального времени.

_	
Сайт компании подрядчика (поставщика решения) при наличии:	